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Abst rac t - -The  dynamics of two spherical droplets, whose movement is driven by variations in 
interfacial tension caused by a temperature gradient, are analyzed using a method of reflections. Both 
droplets have the same internal fluid properties but may differ in size, and the configuration of the 
droplets is arbitrary relative to the direction of the undisturbed temperature gradient. The method of 
reflections is based on an analysis of the thermal and hydrodynamic disturbances produced by a 
single droplet placed in an arbitrarily varying temperature field. The results for two-droplet 
interactions are correct to 0(r  -6) where r is the center-to-center distance between the droplets. For 
the specific case of bubbles oriented parallel with the undisturbed temperature gradient, my results 
agree very well with numerical calculations found in the literature. The results for two, identical 
droplets are used to find the 0(~b) effect on mean droplet velocity of a bounded suspension, where qb is 
the volume fraction of the droplets. In general, the interactions between droplets moving by 
thermocapillary effects are much weaker than in the case of sedimentation. 

1. I N T R O D U C T I O N  

Young et al. (1959) demonstrated mathematically and experimentally that gradients of 
interfacial tension can drive the motion of droplets suspended in a second fluid. The 
interfacial tension (3') varies about the-surface of the droplet because there exists a gradient 
of temperature (T) or chemical compositon (C) in the surrounding fluid. Assuming that 3" 
decreases with increasing T, the droplet moves toward hotter regions because of the 
nonuniform stresses at its surface which tend to pull the surface from the hot side to the cold 
side. If the droplet is spherical with radius a, and if it is sufficiently small that convective 
contributions to heat and momentum transport are negligible, the droplet velocity is 
computed from the following expression which Young et al. derived: 

U(O) ~ 2 a ( a y )  
(2 + k*)(2 + 3r/*) 7/ - ~-T vT®, 

[1] 

where v 7". is the temperature gradient (assumed uniform) if the droplet were not there, ?/is 
the viscosity of the surrounding fluid, and k* and r/* are the ratios of the thermal 
conductivities and viscosities, respectively, between internal and surrounding fluids. (Note 
that typographical errors occur in [9] of Young et al. (1959).) Equation [1] also holds for 
motion induced by gradients of composition, with C replacing T and KD* replacing k* where 
K is the solute distribution coefficient between internal and surrounding fluids and D* is the 
ratio of solute diffusion coefficients. 

Significant advances in the mathematical analysis of thermocapillary driven movement 
of droplets have been made by Subramanian and co-workers. The effects of convective heat 
transfer have been examined (Subramanian 1981, 1983) and found to be 0(Pc 2) where Pe 
equals the Peclet number based on droplet radius, droplet velocity as calculated from [1], 
and thermal diffusivity of the surrounding fluid. Meyyappan et al. (1981) solved for the 
correction to [1] in the case where a bubble moves perpendicularly to an infinite planar 
surface and found the boundary effect to be relatively weak compared to that experienced by 
a sphere undergoing sedimentation. Meyyappan et al. (1983) solved the problem of two 
bubbles which are aligned with the undisturbed temperature gradient using an exact 
representation in bipolar coordinates, while Meyyappan & Subramanian (1984) obtained 
the velocity of two arbitrarily oriented bubbles, correct to 0(r -3) where r is the center- 
to-center spacing, using an approximate technique based on a single reflection of thermal 
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and hydrodynamic disturbances caused by one of the bubbles. An important result of these 
latter two studies is that the interaction between two bubbles is asymptotically of 0(r- 3). 
rather than 0(r -1) as for the interaction between two Stokeslets (Happel & Brenner 1973); 
hence, the correction to [1] in the case of two bubbles in proximity is relatively weak 
compared to configurational effects expected in sedimentation. 

In this paper I derive the velocity of two spherical droplets as a function of their 
separation (r) and orientation (~ = r/r) relative to the undisturbed, constant gradient v T~. 
Reynolds numbers are assumed small so that the Stokes equations apply. A method of 
reflections is used to evaluate the effects of one droplet on the local velocity and temperature 
fields experienced by the other droplet, the results are expressed in terms of mobility 
coefficients Mq defined as follows: 

Ut = M , t "  UI°)+ M , 2 '  V~ °' [2a] 

Mq = dq(r )  ~.~ + B, j ( r ) [ I  - ~ ] ,  [2b]  

where U~ °) is computed from [1]. In the analysis, the two droplets are assumed to have the 
same material properties (/~, ~) but may differ in size. Convective heat transfer is assumed 
negligible in solving for the temperature fields, and the Stokes equations are used to find the 
velocity fields. In the next section I consider the local fields which arise when a single droplet 
is placed in an undisturbed temperature field whose gradient is not necessarily constant over 
length scales comparable to the droplet radius. I prove that [ 1 ] also applies to a single droplet 
in a nonuniform temperature-gradient. These results are then used in the subsequent section 
to alternately evaluate the effect of one droplet on the other. The coefficients Ai) and B U are 
determined in this manner with an error of 0(r-S), and the results are found in [26] and [29]. 
In the final section, my results are compared with the calculations of Meyyappan et al. 
(1983) for the special case of two bubbles which are aligned with the undisturbed 
temperature gradient. The two-droplet interactions derived here are then applied to theories 
of concentration effects on transport coefficients in dilute suspensions to obtain the 0(40 
correction to the mean velocity, where $ is the volume fraction occupied by the droplets. 

2. SINGLE DROPLET IN A TEMPERATURE FIELD 

In order to apply the method of reflections to obtain the interactions between two 
droplets, as done in the next section, it is essential to understand the thermal and 
hydrodynamic effects of a single droplet in an arbitrary temperature field Tx (x). The droplet 
is a sphere of radius a with internal thermal conductivity/~ and viscosity ~. The position of its 
center is xo, and the relative coordinate r equals x - Xo. Although xo changes with time, the 
problem is considered quasi-steady, a good approximation if both the Peclet and Reynolds 
numbers are small. The undisturbed temperature field is assumed to satisfy Laplace's 
equation: 

v~T~ = 0. [3] 

The validity of assuming a spherical shape for the droplet requires the viscous stresses on 
its surface be small relative to capillary forces: •U/3, << 1. Using [1] for Uwith k* = r/* = 0 
(a bubble), this constraint becomes 

I - vTA <<1, 
3' 

which will exist, even if ,7TA varies over length scales of 0(a), as long as temperature 
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differences across the poles of the droplet are sufficiently small to make A~, << 7. In fact, the 
above constraint is generally less stringent than requiring the Reynolds number to be small. 

In this section I first solve for the disturbance to TA caused by the droplet, and then the 
droplet velocity and the velocity field in the surrounding fluid caused by thermally induced 
variations of interfacial tension at the surface. 

Temperature field 
The energy balance must be maintained inside and outside the droplet. Assuming 

convective transport is negligible, one has 

(r < a) v27" = 0, [4a] 

(r > a) v2T  = 0, [4b] 

r = a :  T =  T, [5a] 

k o r  
Or Or 

r--*o~: T--* TA. 

A solution to [4], which satisfies [5a] and [5c], is the following: 

r = Ta + S,,[.lX=. 

The S,~ are surface harmonics, defined by 

S,~ = r m+l ( V . . .  V) m ( r - ' )  

S o =  1 

r 

r 

r r  
= S ~ = 3 7 - I =  

[Sb] 

[5c1 

[6a] 

[6b] 

[7] 

(etc.) 

where I is the unit dyadic. The X,, are polyadic constants, and the symbol [.] denotes m 
scalar products using the inner nesting convention. 

To determine X=, it is convenient to use the orthogonal property of surface harmonics: 

(S=Sj )  = 0 i fm =g= j 

The brackets denote an average over the area of a sphere of unit radius, expressed as follows 
in terms of integration over the spherical angles (0, 4)): 

1 f f f s i n  0 dO ( f )  = - ~  
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Substitution of [6] into [5b] shows 
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(1 - k * )  

(2 + k*) 
- -  a ( v  TA)o [ 8 a ]  

(1 - k*) a2(VVTA) ° [8b] 
)~2 3(3 + 2k*) 

where the subscript o denotes evaluation at x = Xo, and k* = ~:/k. The disturbance to the 
temperature field, T' ~ T - TA, is found by combining the foregoing expressions. 

(r  < a) 

(r > a) 

k2+k,]r . (vTA)o+ + - ~  rr:(vvTA)o+O(vvvTa)o [9a] 

T' (1 - k*](al3 = ~ ] k r ]  r .  (vTA)o 
[9b] 

( 1 -  k* ](a I' 
+ ~3- + 2-'~) ~r] r r: ( v v  TA)o + O(VVV TA)o. 

The gradient of T in the plane of the droplet surface, v s T, is needed to evaluate the stress in 
the next section; it is obtained by differentiating either of the above two expressions at r = a, 
adding the result to the Tayl6r expansion of v TA about x = Xo, and eliminating the normal 
component. 

r = a :  v,T= (I - nn )  • v T  

(.3 ) + + ~ ,  (I-nn)n:(vVrAo+O(vvvrAo.= 

[10] 

with v ,  T determined from [ 10]. Note that 0~/0 T is assumed constant on the scale of droplet 
radius. This stress creates motion which must satisfy the Stokes equations. 

( r < a )  ~ v 2 ~ - -  v p = 0 ,  

( r > a )  r t v2v - -  v p = 0  

V . v = O .  

r =  a: ~ =v ,  

ur  = n • U ,  

( I  - n n ) n : ( ~  - b )  = - ~ ( ,  

r - ~  co :  v - - ~  O. 

[12a] 

[12b] 

[13a] 

[13b] 

[13c] 

[13d] 

n is the unit normal vector at the droplet surface and points into the surrounding fluid. 

Droplet velocity and velocity field in surrounding fluid 
The interfacial tension is temperature dependent, so the tangential stress discontinuity at 

the droplet surface is 

r = a: v~3' = 03' v~T, [11] 
OT 
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U is the droplet velocity which is presently unknown. Boundary condition [13a] is not exact 
because interfacial forces accounting for 3' are distributed over a small but nevertheless finite 
distance normal to the interface, as discussed by Anderson et al. (1982); however, [ 13a] is a 
very good approximation if ~/~ is not too large (say, ¢1/n < 103). Condition [13c] is a force 
balance in the plane of the interface, with ~ denoting the Newtonian stress dyadic. No force 
balance in the n direction is necessary because the droplet is assumed spherical. 

A solution for ~ and v can be constructed from Lamb's general solution as modified by 
Brenner (1964). The fields are described by the polyadic coefficients (a,,, {3m) which are 
determined from the following expressions:t 

n • v ( ° ) =  ' ~ .  S , , [ . ] a , . ,  [14a] 
m - I  

-rx7 • v(°)= ~ S,,[.]¢1,,, [14b] 
m - I  

where v (°) = v(r = a), the velocity on the droplet surface. By requiring ct,, and/3,, to be the 
same for internal and surrounding fluids, condition [13a] is automatically satisfied. From 
[ 13b] one has 

O/! ~ - U  
2 

a .  ~O i fm > 1. [15] 

The coefficients/3,, must be determined by satisfying [ 13c]. Using the expressions for v and v 
in terms of (am,/3,.), as developed by Brenner (1964), [13cl becomes 

[ ( m  2 + 2 m +  2) r V S m [ . ] a r , +  rvSm[']13m - r v S t . a l  
- n m. [ r e ( m +  1 )  r e ( m +  1 )  {;r,m+l' ] } 

with v , T  obtained from [10]. By equating terms of equal orders in ~7S,,, one has 

[16] 

1 [ 2 a (  0_~ ( v  TA)o] [17a] 
O~ l + r t *  U+2+-------~rt - 

= = - - - -  ( v v T a ) o ,  /32 (1 + 7*)(3 + 2k*) 
[17b] 

where 7" = J/n- 
In order to determine the droplet velocity, we must realize that the fluid force on any 

boundary enclosing the droplet is zero, since the temperature field produces no bulk (body) 
forces in the fluids. Suppose we take this imaginary boundary to be spherical with r = R > a. 
Then taking the limit R ---, a gives 

Ff=a2ffR_o n . _ _ a s i n 0 d 0 d O = 0 .  [18] 

tit can be shown there are no rotational effects, that is, r • (g'xv (°~) - O, since the temperature field exerts no 
couple on the droplet. 
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Brenner (1964) showed that 

F / =  2rr/a (3cq + ill). [19] 

After combining [15], [17a], [18] and [19], one has 

U = (2 + k*) (2  + 3 . * )  - ~-~ (vTA)o. [20] 

which is identical to [1] but applies to any T,~ which satisfies [3]. The generality of [1] to 
nonuniform gradients has also been demonstrated by Subramanian (1985). 

The velocity fields inside and outside the droplet are obtained by using expressions found 
in Brenner's paper. The only characteristic of the field inside which is needed in this paper is 
the volume-averaged value of ~, which equals U. The external field is given by the following 
which is correct to O(vvTA) :  

1 (a/3 ( rr ) 
(r>a) v=21r] 3 7 - 1  .U 

3 1 a (  0 )(a_/Jrrr  
- 2 ( I  + 7 ' ) ( 3  + 2 k * ) .  - i r  ] r2 : (vvTA)o  [21] 

2 , , a( . r  ) 
; 5 7 :(vvrA)o. 

Note that while the primary field (first term on the right side) decays as r -3, the secondary 
field, which is proportional to v v  T,, decays as r -2 and hence is longer range. The secondary 
field contributes to the interactions between droplets, as shown in the next section. 

3. DERIVATION OF INTERACTIONS BETWEEN DROPLETS 

An arbitrary configuration of two droplets is considered, with rl2 being the vector from 
the center of droplet 1 to the center of droplet 2. The objective is to derive M u, or A;j and B u 
(see [2]), as a function of center-to-center distance r,2, physical properties such as k* and 7" 
which are assumed the same for both droplets, and droplet radii a~ and a2 which could differ. 
The unit vector defining orientation of the two droplets is 6 = r~2/rz2. The undisturbed 
temperature gradient (v  T®) is assumed to be constant over length scales comparable to r12. 
The key results of the previous section, which are used below, are [9b], [20] and [21]. 

The coefficient M~, is considered first by setting Oy/OT equal to zero for droplet 2 (i.e. 
U~ °) = 0). There ar~ 'hree effects of droplet 2 which produce a change 6U~ in the velocity of 
droplet 1 : 

6 u ,  = ouIP + ouIP, + oui:'9. 

6U~p is the change in U~ due to the disturbance (TD of the tempertaure field T= caused by 
the presence of droplet 2. Using [9b] for T~ and [20] for 6U(2p, one has 

6U(2P = - I~2 + k * ]  \ r tH  = 

au(r~ is the result of reflecting the disturbance (T~). caused by droplet I interacting with T®, 
from droplet 2 back to droplet I. 

(r) = (1 - k*12  (a ,a2)  3 [3 6 6 + I ]  • U ]  °) + 0 ( r 2 ) .  
6U,2, ~2 + k * ]  r6~---~ = [23] 
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Finally, ~Utt2m~ is the change in UI produced by reflecting the velocity field caused by UI °), 
called Vl here, from droplet 2 back to 1. Since the droplet is force free, the reflection is 
computed from the following (Batchelor 1970): 

t3. Tit o 2 + 5 . *  a] ~ :  [vvl + (Vvl)r  ] ..... + 0 (ri_24 VVl, ri_23 v vvi) .  ,Jl21 4(1 + .* )  r~2 [24] 

Using [21] to evaluate Vl with TA ffi T®, one has 

(to 3 (2 + 5 .*  / (a,a2) 3 U] °) O( r~) .  [251 
= - i t T T U ,  ] - - ; V - ?  • + 

After summing [22], [23] and [25] with the primary velocity I • U] °), the final results for An 
and Bn, as defined in [2], are obtained. 

(i [ (I - k*/2 3 (2 + 5~/*/] (ata2)' O(r~)  [26a] 
An = 1 - 2 \2----~] \rI2/ ~2 + k*] -2 k l-]--~* ]j r~2 + 

(1- (1 - (o,a,) '  , 
B~I = 1 + \2 + k*] \rn] + ~2 + k*] r~------~ + O(rn ). [26b] 

The mobility MI2 is now evaluated by setting 03,lOT - 0 for droplet 1 (i.e. U] °) = 0), and 
examining the velocity field produced-by droplet 2 as it moves in response to vT®. The 
primary velocity field caused by movement of droplet 2 at U(2 °), denoted by v~ and calculated 
from [21] with TA = T®, convects droplet 1 at a rate given by Faxen's law as modified by 
Hetsroni et al. (1971) for fluid particles: 

6U~ ) = v: ,=-,,, + al2 4 + 6)/* ,--,,2 = 2/r'~l~] [3~fi - II • [271 

A second effect arises because the disturbance (T]) of the temperature field T® by droplet 1 
interacts with droplet 2 to create a velocity field, determined from [21] with TA = ~ ,  which 
convects droplet 1. The change in the velocity of droplet 1 caused by this effect is 

tiff, to { l { 1 - k *  / • -,,2I = - ~ ~ ] [ I +  3~1 
[28] 

9 ( 1 - k* \ (2  + 3 , * \ . . ]  (a la2) ' .  U~o) 

Miz is obtained by summing [27] and [28] and factoring U~ °). The scalar coefficients in [2] 
are 

A i z = ( a 2 1 3 _ [ 2 [ l - k *  I 9[.! 2 - k * 1 [ 2 +  3.*/](aiaz)3 
\rl2 ] k2 + k*] - 2 k3 + 2k*] k 1 + .--'---'~]J r~-----~ + O(r~2S) [29a] 

BI2 = - ~ \rl2] - 2 k ~ )  r~-----~ + O(r~?). [29b] 

These expressions, along with [26], form the main results of this paper. 
Two limiting cases are now considered. First, let both droplets be equal in size; hence 

they move at the same velocity (U) at any configuration. 

U = A(r,2)~6 + B(r,2)[I - 6~] [30a] 
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A =Al l  + Alz= 1 + 
(:)3 

2 + k *  

( 2 + k * - ~  + 2  (1 + n * ) ( 3 + 2 k * )  ] ~ +O(r? : ) '  

[30b] 

B f f i B l l  + B t 2 =  1 
3 .  3 . , 1  

2(2 + k*) ~ :  - 2 ~ +  k ~  + 0(ri-28). [30c1 

In the second case, let both droplets be "bubbles" (k* ---, 0, 7/* ---- 0) which could be of 
different size. Then, 

/ \  (ala2) 3 
A,, = 1 - |a--z/3 - 2 + 0(ri-:), [31a] 

~rt:] r612 

At2= (a--~-213 + 2  (a~a2) 3 \riH r~"-----~ + 0(r~28)' [31b] 

1(a_£13 1 (a,a2)' 
BII = 1 + 2 ~r,2/ + 4 r?-----~ + O(r~8)' [31c] 

1(a213 1 (ala2) 3 
BI2:=__ - -  2.. \r,2 / 4 r6-----~ + 0(ri-2s)" [31d] 

These results agree with the 0(ri-23) derivations by Meyyappan & Subramanian (1984). If 
the bubbles are of equal size (so UI °) = U~°)), 

A = All + A12 = 1 

B = B I I  + BI: = 1 

and hence 

U = U (°), [32] 

at least to 0(r~6). Meyyappan et al. (1983) show this result to be exact at all separations 
when the bubbles are aligned with the temperature gradient. 

4. DISCUSSION 

The interaction between two droplets results from two phenomena: each droplet disturbs 
the local temperature field experienced by the other, and the movement of each drags 
surrounding fluid which convects the other droplet. The interaction is relatively weak, of 
0(ri-:) in the leading term, because both the temperature and velocity disturbances of each 
drop decay like r -3. For comparison, the leading order of interaction between two Stokeslets 
is 0(r~-2~); hence, the interaction between droplets undergoing sedimentation is much stronger 
than droplets moving by the Marangoni effect. 

My results for bubbles, [31 ], can be compared with the calculations of Meyyappan et al. 
(1983) by considering movement when 6 is parallel to vT®. The velocity of bubble I in this 
parallel alignment is 

U ~ t u  a--2 = 1 + - -  + 2 - -  1 - - -  - -  + 0 ( r ~ - 2 s ) .  [331 
U~lO ) - All + a~ At2 -~l /\rl2] \a2] a2/\rl2/ 
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Table 1 compares this equation, with the 0(rt2 a) term neglected, with the calculations of 
Meyyappan et al. for at~a2 = 0.5. The agreement is quite good even for a2/rt2 as large as 
0.606 (a:/r~2 = 0.667 when the bubbles touch), indicating the higher order terms such as 
0(ri-z 8) are not important unless the bubbles are very near contact. In fact, by using only the 
0(r?z 3) term of [33] which was derived by Meyyappan & Subramanian (1984), there obtains 
a reasonably good approximation when a2/rt2 < 0.5. This favorable comparison is encourag- 
ing in the sense it implies the general results for arbitrary k*, 7/* and al/a2 are quite accurate 
for a large range of separations. 

The details of two-droplet interactions can be used to find how the mean velocity of a 
suspension of droplets is affected by the volume fraction (4~) of the droplets. 

(U)  = [1 + K~b + 0(4fl)]U (°). [341 

Assume all droplets are the same size. The theory of incorporating two-body hydrodynamic 
information to obtain K is described elsewhere (Batchelor 1972, Anderson & Reed 1980, 
Glendinning & Russel 1982). Because the suspension is bounded, the volume-averaged 
velocity and temperature fields must obey the following: 

f v v d V = 0 ,  fv  v T d V = v T ® ,  [35] 

where V denotes the entire volume of= the suspension. These mean fields are added and 
subtracted in judiciously chosen places to allow the results for unbounded systems, which 
were derived in the previous two sections, to be applied to a bounded suspension. The 
expression for K is 

,,u(o) 3 
~ v~(r)[g(r) - 1] dr 

} + (2 + k*)(2 + \ O r  I v r ' , ( r ) [ g ( r )  - 11 dr + W(Og(r) dr. 

[36] 

v~ is the fluid velocity and T'~ the temperature disturbance (T - T®) caused by a single 
droplet at r = 0 in the constant undisturbed gradient ~TT~; v~ and T'~ are computed from [21] 
and [9b], respectively, with TA = T®. W is a "correction factor" given by 

W = U ( r ) -  U ( ° ~ + v l +  ( 2 + k * ) ( 2 + 3 n * ) r /  [37] 

where U(r)  is the velocity of the droplet o f t  given a neighbor at 0. Note that W is 0(r -6) and 
hence converges when integrated over the entire volume (r --- o~). 

One of the significant problems in determining suspension properties, such as K, is that 

Table !. Two bubbles aligned with the temperature gradient; a~/a z - 0.5 

u, v~ °' u d u'?' 
a2/rt2 Eq. [33] Lit.t Eq. [33]* Lit.* 

0.60606 1.23500 1.26894 0.97989 0.97675 
0.55556 1.17882 1.19107 0.98561 0.98447 
0.50000 1.12891 1.13304 0.99023 0.98986 
0.44444 !.08972 1.09105 0.99355 0.99343 
0.40000 1.06502 1.06553 0.99549 0.99544 
0.22222 1.01100 1.01101 0.99930 0.99930 
0.15385 1.00364 1.00364 0.99977 0.99977 

tMeyyappan et al. (1983) 
-rr(O) t o m  :~To obtain U:/w: f equation [33], replace alia2 by az/al, and az/rtz by al/rp 
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the two-particle distribution function, g(r), could depend on the applied forces such as v T~; 
Batchelor (1974) discusses this point. For identical particles which experience negligible 
long-range forces, a "hard sphere" distribution is appropriate: 

g = 0 if r < 2a 
[38] 

= 1 if r > 2a. 

To achieve uniformity at r > 2a, the particles must be sufficiently small that Brownian 
motion dominates any multiparticle hydrodynamic interactions which might tend to impart 
microscopic structure to the suspension. The zero value for r < 2a is simply an excluded 
volume effect. By combining [36]-[38] and using the results of the previous sections, namely 
[2], [26] and [29] for U, [21] for v I and [9b] for T'~ with TA = T~, I obtain 

3 1 [ 9 k * ( I  - k*)  3 ( 1 0 k *  + 6r/* + 19k'r /*)  ] 
2 + k* 24 L (-2+ k-*-~ + 2 (1 + r/*)(3 + 2k*) " [39] 

This result is not exact, even given that [38] holds, because 0(r -8) terms are neglected in W; 
however, the error should be small. ~ is always negative, so the mean velocity of a suspension 
is lower than for a single droplet. 

As examples of limiting situations, consider 1) bubbles (k* = r/* = 0), 2) viscous, 
insulating droplets (k* = 0, r/* ~ oo), and 3) viscous, conducting droplets (k* ---- oo, 71" ---* ~). 
Using [39] one has 

3 13 7 
K, = - ~ ,  r2  = - - i f - ,  K, = - 3-2 [ 4 0 ]  

Note that for bubbles K is non-zero, even though there is no interaction between two 
equal-sized bubbles in an unbounded fluid. The reason for this is that in the bounded 
suspension the volume-averaged flow is zero (this contributes - 1  to K) and the mean 
temperature gradient is ~7 7"= (this contributes - t/2 to K). The results in [40] show that, in any 
case, the magnitude of ~ is small relative to what is found for sedimentation of droplets 
(Anderson & Reed 1980): 

K , ~  = - 4 . 0  (77* - - ,  0 )  [ 4 1  ] 

= - 6.5 07* ~ ~ )  

The larger magnitude for sedimentation is due to the 0 (ri-2 ~) hydrodynamic interactions, that 
is, a sedimenting droplet carries more surrounding fluid with it than does a droplet moving by 
capillary effects. 

The analysis presented here used a method of reflections which was truncated after the 
O(r i-26) effects, and the general result for unbounded systems is given by [2], [26] and [29]. 
One more reflection of thermal and hydrodynamic fields could be applied to obtain the 
O(r/-~) interactions, but the numerical significance would be small except in the limit when 
the droplets are nearly touching. In the limit of touching, the expansions in O(r~) may not 
converge, so there is little incentive to extend the expansion. 

NOMENCLATURE 

a droplet radius (m) 
A~j interaction coefficient defined by [2b] 
B~j interaction coefficient defined by [2b] 
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r12/r12 

g(r) normalized probability of finding a second droplet at r given the first droplet at 0 
I unit dyadic 

/~ thermal conductivity (J m -1 s -I K -l) 
k* ~/k 

Mij interaction dyadic defined by [2al 
n r/r at the droplet surface 
p pressure (N m -2) 
r x - x0 (m) 

r~2 vector from center of droplet 1 to center of droplet 2 (m) 
Sm surface harmonics defined by [7] 

T temperature (K) 
U velocity of a droplet (m s -l) 
v velocity field in the fluids (m s -I) 

W correction to velocity interaction defined by [37] (m s -l) 
x position vector (m) 

Xo position of center of droplet (m) 
am polyadic constant of order m defined by [14a] (m s -l) 
~m polyadic constant of order m defined by [14b] (m s -l) 

3' interfacial tension (N m -I) 
7/ coefficient of viscosity (kg m -l s-I)_ 

7" ~/n 
K 0(4~) coefficient defined in [34] - -  

Xm polyadic constant defined by [6] (m s -l) 
¢ Newtonian stress dyadic (N m -2) 
4~ volume fraction of droplets 

Note: " over variable denotes property inside droplet. Subscript o on gradient operations 
denotes evaluation at x ~ Xo. 
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